SEARCH BY PDB ID Advanced search
Quick search (PDB ID):


Home Description of BSDB Types of mechanical clamps FAQ
THEORETICAL RESULTS
Survey within the structure-based model
Results of simulations described in PLoS Proteins requested by BSDB users Results of all-atom simulations
EXPERIMENTAL RESULTS
Survey of experimental data
Add new protein!
OTHER DATABASE
PDB CATH SCOP

Please direct questions and comments to
bsdb@ifpan.edu.pl


Back Results of all-atom simulations

Summary of all-atom simulations results on the constant speed stretching of proteins. The symbols are the same as for experimental data. In case of T4 Lysozyme the unfolding force was estimated by the protocol based on the secondary structures of the native state but not by all-atom MD.

Results of constant speed all-atom simulation of stretching of proteins
Protein PDB N Fmax [pN] vp [Å/ps] References

Immunoglobulins
I1 oxidized 1gcg 97 2397 0.5 [12]
I1 reduced 1gcg 97 2090 0.5 [12]
I27 1tit 89 2479 1 [2,12]
I27 1tit 89 2040 0.5 [4-7,9]
I28   93 2082 0.5 [4]
I28   93 2554 1 [4]

Fibronectins typeIII
1FNIII 1oww 97 1500 0.01 [11]
2FNIII 1oww 91 1600 0.01 [11]
7FNIII 1fnf 93 1638 0.5 [1,7]
9FNIII 1fnf 91 2000 0.1 [1,9,10]
10FNIII 1fnf 94 1580 0.5 [1,7,9,10]
9FNIII 1fnf 91 9F<10F 0.1 [13,14]

Other
ubiquitin (N-C) 1ubq 76 2000 0.1 [3,8]
ubiquitin (48-C) 1ubq 28 1200 0.1 [2,3]
BCA II 1v9c 259 2300 0.5 [16]
barnase 1bnr 108 500 0.01 [15]
7A 1aoh   1360 0.01 [17]
1C 1g1k   1610 0.01 [17]
2A 1anu   860 0.01 [17]
cad1 1edh 211 1850 0.5 [7]
cad2 1edh 211 1970 0.5 [7]
cell adhesion VCAM1 1vsc 89 2050 0.5 [7]
cell adhesion VCAM2 1vsc 108 1620 0.5 [7]
T4 Lysozyme 1b6i 164 75 104 [10]
DDFLN4 1ksr 100 700 0.01 [18]
C-cadherin 1l3w 129 1550 0.01 [19]
ankyrin*4 1n11 132 210 0.01 [19]
cytochrome C6 cc6 1cyi 89 no peak 0.5 [7]
binding protein igb 1bdd 60 no peak 0.5 [7]
synaptotagmin (c2) 1rsy 125 no peak 0.5 [7]


References

[1] Craig, D., Krammer, A., Schulten, K. & Vogel, V. Comparison of the early stages of forced unfolding for fibronectin type III modules. Proc. Natl. Acad. Sci. (USA) 98, 5590-5595 (2001).

[2] Chyan, C-L., Lin, F-C., Peng, H., Yuan, J-M., Chang, C-H., Lin, S-H. & Yang, G. Reversible mechanical unfolding of single ubiquitin molecules. Biophys. J. 87 3995-4006 (2004).

[3] Carrion-Vazquez, M., Li, H., Marszalek, P. E., Obershauser, A. F. & Fernandez, J. M. The mechanical stability of ubiquitin is linkage dependent. Nat. Struc. Biol. 10, 738-743 (2004).

[4] Lu, H., Isralewitz, B., Krammer, A., Vogel, V. & Schulten, K. Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys. J. 75, 662-671 (1998).

[5] Lu, H. & Schulten, K. Streed molecular dynamics simulations of conformational changes of immunoglobulin domain I27 interpret atomic force microscopy observation. Chem.Phys. 247, 141-153 (1999).

[6] Lu, H. & Schulten, K. The key event in force-induced unfolding of titin’s immunoglobulin domains. Biophys. J. 79, 51-65 (2000).

[7] Lu, H. & Schulten, K. Steered Molecular dynamics simulation of force-induced protein domain unfolding. Proteins 35, 453-463 (1999).

[8] Li, P-C. & Makarov, D. E. Simulation of the mechanical unfolding of ubiquitin: Probing different unfolding reaction coordinates by changing the pulling geometry. J. Chem. Phys. 121, 4826-4832 (2004).

[9] Krammer, A., Lu, H., Isralewitz, B., Schulten, K. & Vogel, V. Forced unfolding of the fibronectin type III module reveals a tensile molecular recognition switch. Proc. Natl. Acad. Sci. (USA) 96, 1351-1356 (1999).

[10] Klimov, D. K. & Thirumalai, D. Native topology determines force-induced unfolding pathways in globular proteins. Proc. Natl. Acad. Sci. (USA) 97, 7254- 7259 (2000).

[11] Gao, M., Craig, D., Lequin, O., Campbell, I. D., Vogel, V. & Schulten, K. Structure and functional significance of mechanically unfolded fibronectin type III1 intermediates. Proc. Natl. Acad. Sci. (USA) 100, 14784-14789 (2003).

[12] Gao, M., Wilmanns, M. & Schulten, K. Steered molecular dynamics studies of titin I1 domain unfolding. Biophys. J. 83, 3435-3445 (2002).

[13] Paci, E. & Karplus, M. Unfolding proteins by external forces and temperature: The importance of topology and energetics. Proc. Natl. Acad. Sci. (USA) 97, 6521-6526 (2000)

[14] Paci, E. & Karplus, M. Forced Unfolding of Fibronectin Type 3 Modules: An Analysis by Biased Molecular Dynamics Simulations. J. Mol. Biol. 288, 441-459 (1999)

[15] Best, R. B., Li, B., Steward, A., Daggett, V. & Clarke, J. Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation. Biophys. J. 81, 2344-2356 (2001).

[16] S. Ohta, M. T. Alam, H. Arakawa, A. Ikai, Origin of mechanical strength of bovine carbonic anhydrase studied by molecular dynamics simulation. Biophys. J. 87, 4007-4020 (2004).

[17] Valbuena, A., Oroz, J., Hervas, R., Vera, A. M., Rodriguez, D., Menendez, M., Sulkowska, J. I., Cieplak, M. & Carrion-Vazquez, M. On the remarkable mechanostability of scaffoldins and the mechanical clamp motif. Proc. Natl. Acad. Sci. USA 106 13791-13796 (2009).

[18] Kouza, M., Hu, C. K., Zung, H. & Li, M. S. Protein mechanical unfolding: Importance of non-native interactions. J. Chem. Phys. 131 215103-11 (2009).

[19] Sotomayor, M., Corey, D. P. & Schulten, K. In search of the hair-cell gating spring: Elastic properties of ankyrin and cadherin repeats, Structure 13 669-682 (2005).


Institute of Physics, Polish Academy of Sciences 2010
Authors: Mateusz Sikora, Marek Cieplak, Joanna I. Sułkowska    Realization: Bartłomiej S. Witkowski