Summary of all-atom simulations results on the constant speed stretching of proteins. The symbols are the same as for experimental data. In case of T4 Lysozyme the unfolding force was estimated by the protocol based on the secondary structures of the native state but not by all-atom MD.
Results of constant speed all-atom simulation of stretching of proteinsProtein | PDB | N | Fmax [pN] | vp [Å/ps] | References |
Immunoglobulins | |||||
I1 oxidized | 1gcg | 97 | 2397 | 0.5 | [12] |
I1 reduced | 1gcg | 97 | 2090 | 0.5 | [12] |
I27 | 1tit | 89 | 2479 | 1 | [2,12] |
I27 | 1tit | 89 | 2040 | 0.5 | [4-7,9] |
I28 | 93 | 2082 | 0.5 | [4] | |
I28 | 93 | 2554 | 1 | [4] | |
Fibronectins typeIII | |||||
1FNIII | 1oww | 97 | 1500 | 0.01 | [11] |
2FNIII | 1oww | 91 | 1600 | 0.01 | [11] |
7FNIII | 1fnf | 93 | 1638 | 0.5 | [1,7] |
9FNIII | 1fnf | 91 | 2000 | 0.1 | [1,9,10] |
10FNIII | 1fnf | 94 | 1580 | 0.5 | [1,7,9,10] |
9FNIII | 1fnf | 91 | 9F<10F | 0.1 | [13,14] |
Other | |||||
ubiquitin (N-C) | 1ubq | 76 | 2000 | 0.1 | [3,8] |
ubiquitin (48-C) | 1ubq | 28 | 1200 | 0.1 | [2,3] |
BCA II | 1v9c | 259 | 2300 | 0.5 | [16] |
barnase | 1bnr | 108 | 500 | 0.01 | [15] |
7A | 1aoh | 1360 | 0.01 | [17] | |
1C | 1g1k | 1610 | 0.01 | [17] | |
2A | 1anu | 860 | 0.01 | [17] | |
cad1 | 1edh | 211 | 1850 | 0.5 | [7] |
cad2 | 1edh | 211 | 1970 | 0.5 | [7] |
cell adhesion VCAM1 | 1vsc | 89 | 2050 | 0.5 | [7] |
cell adhesion VCAM2 | 1vsc | 108 | 1620 | 0.5 | [7] |
T4 Lysozyme | 1b6i | 164 | 75 | 104 | [10] |
DDFLN4 | 1ksr | 100 | 700 | 0.01 | [18] |
C-cadherin | 1l3w | 129 | 1550 | 0.01 | [19] |
ankyrin*4 | 1n11 | 132 | 210 | 0.01 | [19] |
cytochrome C6 cc6 | 1cyi | 89 | no peak | 0.5 | [7] |
binding protein igb | 1bdd | 60 | no peak | 0.5 | [7] |
synaptotagmin (c2) | 1rsy | 125 | no peak | 0.5 | [7] |
References
[1] Craig, D., Krammer, A., Schulten, K. & Vogel, V. Comparison of the early stages of forced unfolding for fibronectin type III modules. Proc. Natl. Acad. Sci. (USA) 98, 5590-5595 (2001).
[2] Chyan, C-L., Lin, F-C., Peng, H., Yuan, J-M., Chang, C-H., Lin, S-H. & Yang, G. Reversible mechanical unfolding of single ubiquitin molecules. Biophys. J. 87 3995-4006 (2004).
[3] Carrion-Vazquez, M., Li, H., Marszalek, P. E., Obershauser, A. F. & Fernandez, J. M. The mechanical stability of ubiquitin is linkage dependent. Nat. Struc. Biol. 10, 738-743 (2004).
[4] Lu, H., Isralewitz, B., Krammer, A., Vogel, V. & Schulten, K. Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys. J. 75, 662-671 (1998).
[5] Lu, H. & Schulten, K. Streed molecular dynamics simulations of conformational changes of immunoglobulin domain I27 interpret atomic force microscopy observation. Chem.Phys. 247, 141-153 (1999).
[6] Lu, H. & Schulten, K. The key event in force-induced unfolding of titin’s immunoglobulin domains. Biophys. J. 79, 51-65 (2000).
[7] Lu, H. & Schulten, K. Steered Molecular dynamics simulation of force-induced protein domain unfolding. Proteins 35, 453-463 (1999).
[8] Li, P-C. & Makarov, D. E. Simulation of the mechanical unfolding of ubiquitin: Probing different unfolding reaction coordinates by changing the pulling geometry. J. Chem. Phys. 121, 4826-4832 (2004).
[9] Krammer, A., Lu, H., Isralewitz, B., Schulten, K. & Vogel, V. Forced unfolding of the fibronectin type III module reveals a tensile molecular recognition switch. Proc. Natl. Acad. Sci. (USA) 96, 1351-1356 (1999).
[10] Klimov, D. K. & Thirumalai, D. Native topology determines force-induced unfolding pathways in globular proteins. Proc. Natl. Acad. Sci. (USA) 97, 7254- 7259 (2000).
[11] Gao, M., Craig, D., Lequin, O., Campbell, I. D., Vogel, V. & Schulten, K. Structure and functional significance of mechanically unfolded fibronectin type III1 intermediates. Proc. Natl. Acad. Sci. (USA) 100, 14784-14789 (2003).
[12] Gao, M., Wilmanns, M. & Schulten, K. Steered molecular dynamics studies of titin I1 domain unfolding. Biophys. J. 83, 3435-3445 (2002).
[13] Paci, E. & Karplus, M. Unfolding proteins by external forces and temperature: The importance of topology and energetics. Proc. Natl. Acad. Sci. (USA) 97, 6521-6526 (2000)
[14] Paci, E. & Karplus, M. Forced Unfolding of Fibronectin Type 3 Modules: An Analysis by Biased Molecular Dynamics Simulations. J. Mol. Biol. 288, 441-459 (1999)
[15] Best, R. B., Li, B., Steward, A., Daggett, V. & Clarke, J. Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation. Biophys. J. 81, 2344-2356 (2001).
[16] S. Ohta, M. T. Alam, H. Arakawa, A. Ikai, Origin of mechanical strength of bovine carbonic anhydrase studied by molecular dynamics simulation. Biophys. J. 87, 4007-4020 (2004).
[17] Valbuena, A., Oroz, J., Hervas, R., Vera, A. M., Rodriguez, D., Menendez, M., Sulkowska, J. I., Cieplak, M. & Carrion-Vazquez, M. On the remarkable mechanostability of scaffoldins and the mechanical clamp motif. Proc. Natl. Acad. Sci. USA 106 13791-13796 (2009).
[18] Kouza, M., Hu, C. K., Zung, H. & Li, M. S. Protein mechanical unfolding: Importance of non-native interactions. J. Chem. Phys. 131 215103-11 (2009).
[19] Sotomayor, M., Corey, D. P. & Schulten, K. In search of the hair-cell gating spring: Elastic properties of ankyrin and cadherin repeats, Structure 13 669-682 (2005).